Разработаны новые безопасные материалы для рентгеновских аппаратов

Сотрудники МГУ имени Ломоносова получили новые, дешёвые и нетоксичные химические соединения, которые эффективно преобразуют рентгеновское излучение в видимый свет, эти материалы, как считают учёные, помогут создать более эффективные рентгеновские аппараты и датчики ионизирующего излучения. Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда (РНФ), опубликованы в журнале Dalton Transactions.

Материалы, которые испускают свет видимого диапазона при попадании на них рентгеновского или другого ионизирующего излучения, называют сцинтилляторами. Их широко используют в медицине и технике: в рентгеновских аппаратах, досмотровых лентах в аэропортах, а также в устройствах для проверки качества самых разных материалов. Одними из наиболее перспективных сцинтилляторов считаются гибридные галогениды марганца — соединения галогенидов марганца с галогенидами органических аминов. Они хороши тем, что способны поглощать и испускать свет в широком диапазоне длин волн, благодаря чему одно и то же вещество можно использовать во многих устройствах для разных целей. Кроме того, эти материалы дёшевы в производстве и нетоксичны.

Однако большинство изученных на сегодняшний день гибридных галогенидов марганца содержат объёмные органические молекулы, которые снижают плотность материала и, следовательно, его способность поглощать и преобразовывать рентгеновское излучение. Из-за этого приходится использовать толстые слои материала, что увеличивает габариты устройств и не позволяет добиваться высокого разрешения.

Учёные из МГУ синтезировали четыре соединения марганца с бромом и компактными органическими остатками. Сравнение с другими существующими на сегодняшний день гибридными галогенидами марганца показало, что новые материалы значительно эффективнее преобразуют падающее на них высокоэнергетическое излучение в свет видимого диапазона. Так, например, материалы с объёмными органическими молекулами обладают полным поглощением, только если их толщина составляет несколько миллиметров. В случае новых молекул для аналогичного результата достаточно субмиллиметрового слоя, а значит, их можно будет использовать в миниатюрных датчиках ионизирующего излучения и медицинских приборах.

«В отличие от большинства аналогичных материалов, синтезированные нами образцы имеют относительно высокую плотность благодаря тому, что органические компоненты структуры в них занимают небольшую долю объёма. Это позволяет им эффективнее улавливать рентгеновское и видимое излучение, а затем преобразовывать его», — пояснил участник проекта, кандидат химических наук, научный сотрудник лаборатории новых материалов для солнечной энергетики факультета наук о материалах МГУ Сергей Фатеев.

«В дальнейшем мы планируем исследовать системы с другими органическими молекулами и галогенами для поиска материалов, наиболее эффективных при создании тонкоплёночных оптоэлектронных устройств для детектирования ионизирующего излучения. В нашей работе мы стремимся разработать эффективные прототипы рентгеновских детекторов и визуализационных экранов, применяемых в медицине и научных исследованиях», — отметил руководитель проекта, кандидат химических наук, заведующий той же лабораторией Алексей Тарасов.