Метод импедансной спектроскопии раскрыл механизм ингибирующего воздействия пирокатехина на сталь

Накопление смолистого осадка продуктов окисления пирокатехина на поверхности металла в результате гомогенной реакции с кислородом не явилась существенным фактором для ингибирования.

Было проведено несколько 28-дневных экспериментов, в которых образцы выдерживались в растворах с различными концентрациями ингибитора. Периодически, с интервалом в несколько дней, ученые измеряли импеданс образца в растворе с добавлением пирокатехина. Затем образец извлекали из раствора с ингибитором и тщательно смывали скопившийся на поверхности смолистый осадок. Очищенный образец переносили в модельный раствор без ингибитора для повторного получения спектра импеданса.

«Перед нашей научной группой стояла задача – прояснить механизм защитного механизма пирокатехина при коррозии стали и оценить степень влияния двух процессов: образования на поверхности стали тонких хелатных пленок и накопления на ней смолистого осадка из-за взаимодействия пирокатехина с активным кислородом, – рассказал один из авторов работы, ведущий научный сотрудник лаборатории окисления и пассивации металлов и сплавов ИФХЭ РАН, кандидат химических наук Вадим Эдуардович Касаткин. – Выяснилось, что ингибирующий эффект возникает преимущественно потому, что сильно адсорбированный пирокатехин блокирует активные центры поверхности металла. Однако в требуемых концентрациях пирокатехин является токсичным. Возможности его промышленного применения для защиты железобетонных изделий требуют дополнительных исследований».

Метод электрохимического импеданса (EIS) показал себя очень удобным инструментом для исследования коррозионных процессов, поскольку сравнение спектров, снятых с образцов с защитой и образцов без ингибитора, позволяет количественно оценивать защитный эффект. При снятии спектров импеданса воздействие на систему ограничено наложением переменного электрического сигнала малой амплитуды, которое не вызывает в ней необратимых изменений. Выполняя повторные измерения спектров через определённые промежутки времени, можно следить за состоянием защищаемого металла и за стабильностью действия ингибитора.

«В нашем Институте разработана серия универсальных потенциостатов IPC, которые вместе с дополнительным блоком FRA (Frequency Response Analyzer) позволяют реализовать методики спектроскопии электрохимического импеданса, – рассказал Вадим Эдуардович. – Тесное сотрудничество с коллегами, использовавшими это оборудование для изучения разнообразных объектов, а также самостоятельные исследования нашей научной группы позволили значительно усовершенствовать приборы и устранить многие проблемы, проявляющиеся при работе с некоторыми объектами». Исследование опубликовано в International Journal of Corrosion and Scale Inhibition.

Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук — один из ведущих химических институтов Российской академии наук. Насчитывает более 800 сотрудников, среди которых 7 академиков, 9 членов-корреспондентов РАН, более чем 100 профессоров и 260 кандидатов наук. Проводимые в ИФХЭ РАН фундаментальные и прикладные исследования характеризуются многопрофильностью и включают следующие научные направления: поверхностные явления в коллоидно-дисперсных системах, адсорбция, физико-химическая механика; супрамолекулярные и наноразмерные системы для использования в современных высоких технологиях; химическое сопротивление материалов, защита металлов и других материалов от коррозии и окисления; химия и технология радиоактивных элементов, радиоэкология и радиационная химия; электрохимия. Успехи сегодняшних исследований опираются на уникальную экспериментальную базу Центра Коллективного Пользования, позволяющую решать практически любую задачу физико-химического исследования вещества или свойств его поверхности разнообразными современными методами. В их числе: электронная микроскопия и рентгеновский микроанализ, рентгеноструктурный анализ, рентгеновское малоугловое рассеяние, атомно-адсорбционный анализ, эллипсометрия, аннигиляция позитронов, хромато-масс-спектрометрия, инфракрасная, рамановская, фотоэлектронная, электронная спектроскопия, ядерный магнитный резонанс.