Структурная геномика меняет курс

Американская программа по структурным исследованиям белков (PSI), за десятилетие своей работы давшая миру более 5000 пространственных структур биологических молекул, для следующего этапа своих изысканий меняет курс. Дело в том, что из этих пяти тысяч лишь 128 белков — это белки человека, а большинство же лежит в базах данных мёртвым грузом, практически не вызывая интереса биологов. Следующая пятилетка программы PSI пройдёт под знамёнами человеческих объектов, и в первую очередь — рецепторов, действующих через активацию G-белков.

«Биомолекула» уже рассказывала достаточно подробно об инициативе, носящей название структурная геномика (см. «Ловля бабочек, или чем структурная геномика поможет биологии» [1]), целью которой является максимально полное покрытие «белковой вселенной» пространственными структурами. Запущенная в 2000 году американская программа по структурным исследованиям белков PSI (Protein Structure Initiative) называла своим ориентиром очень широкое многообразие объектов, — как эукариотических, так и прокариотических. Эту стратегию объясняли намерением для максимального числа белковых последовательностей сделать возможным предсказание пространственной структуры на основе гомологии (эволюционного родства) с белкáми, чья структура определена экспериментально [2].

Следующая пятилетка в жизни проекта PSI, оделённая $290 млн. государственного финансирования, начнётся с радикального изменения курса и стратегии всей инициативы. Дело в том, что проект встретился с резкой критикой в адрес поставленных целей — звучали обвинения по поводу нерационального расходования крупных бюджетных сумм, уходящих во многих случаях на белковые структуры, не вызывающие практического интереса или даже простого научного любопытства у биологов. (В скобках отметим — нам бы их проблемы; у нас бюджетные суммы уходят на совсем-совсем другие вещи.)

Деньги в трубу

И действительно: из примерно 5000 структур, которые дал миру проект PSI, лишь 128 относятся к человеческим (а значит, интересующим медицину и фармацевтическую индустрию) белкáм, а подавляющее число полученных структур — это бактериальные объекты с невыговариваемыми аббревиатурами и почти неизученными функциями. Короче, это структуры, которые мало кого в настоящее время интересуют, да и неизвестно, возникнет ли такой интерес когда-нибудь в будущем. Даже если учесть, что одна из заявленных целей — предоставить структурные «шаблоны» для моделирования как можно большего числа структур белков — формально может считаться выполненной, от этого легче не становится: теоретические модели стали доступны лишь для «родственников» никому не интересных белков, заведомо обрекая себя на ту же участь.

В то же самое время другие (пусть и не столь щедро финансируемые) ветви структурных исследований не теряли из виду главного своего ориентира — биологии. Английско-канадско-шведский консорциум по структурной геномике (Structural Genomics Consortium), финансируемый как из бюджета, так и за счёт частных средств, ориентируется на мишени, важные для вопросов здравоохранения и медицины. Японская целевая структурная программа (Targeted Proteins Research Program), чей бюджет эквивалентен $46 млн., кроме этого работает ещё на пищевую промышленность и фундаментальные исследования.

Право руля!

Новый курс американской структурной программы получил название PSI:Biology, и его цели примерно те же, о которых сказано в предыдущем абзаце. Так, один из 13 центров PSI — Северо-восточный (Northeast Structural Genomics Consortium, университет Ратгерса, Нью-Джерси) — будет в сотрудничестве с академическими группами работать над митохондриальными белкáми, а также над структурными аспектами регуляции экспрессии генов. Девять других центров сконцентрируются на интегральных белках биологических мембран, долгие годы не поддающихся расшифровке, — таких как рецепторы, действующие через активацию G-белков (G-protein coupled receptors). Несмотря на то, что именно это семейство «обслуживает» львиную долю всех сигнальных процессов в организме, и что около половины коммерческих лекарств действует именно на эти белки, на сегодняшний день определены структуры только пяти таких рецепторов [3–5]. Во всех же остальных случаях (где структура неизвестна) работа по созданию или оптимизации новых лекарств кипит, что называется, с завязанными глазами.

Конечно, в условиях урезания бюджета необходимо переходить от «ломовой» стратегии к чему-то более тщательно продуманному; в частности, тесное сотрудничество с исследовательскими лабораториями должно увеличить пользу от всей инициативы, — и за счёт более осознанного выбора мишеней для структурной характеризации, и за счёт увеличения доли успешных экспериментов. Ведь и подбор экспериментальных условий для определения структуры требует больших знаний из биологии изучаемого объекта, — в частности, часто бывает, что стабильность белкового кристалла, чрезвычайно важная для успеха эксперимента, существенно повышается при взаимодействии белкá с его естественным партнёром в клетке.

Хорошо, когда дебаты в сообществе идут о том, как повысить эффективность уже и так неплохо работающих программ, а не о том, как будет проведён очередной тендер на «освоение» бюджета.

По материалам Nature News [6].

Литература

  1. Ловля бабочек, или Чем структурная геномика поможет биологии;
  2. Торжество компьютерных методов: предсказание строения белков;
  3. Зрительный родопсин — рецептор, реагирующий на свет;
  4. Новый рубеж: получена пространственная структура β2-адренорецептора;
  5. Рецепторы в активной форме;
  6. Heidi Ledford. (2010). Protein mapping gains a human focus. Nature. 466, 544-544.