Оценивая потенциал внедрения ИИ, может сложиться впечатление, что люди больше не нужны, но при этом за последние два года было создано почти 8 млн рабочих мест в США, а дефицит занятых оценивается почти в 4 млн человек.

Что здесь не так? Внедрение ИИ идет не первый год. Первое масштабное внедрение ИИ технологий началось в начале 21 века, с 2010-2020 бум интеграций по всем секторам экономики, а с 2023 начался новый этап – экспансия генеративного ИИ.

Под угрозой находятся:
- водители транспорта (по мере внедрение автопилотов),
- почти поголовно операторы Call-центров и службы поддержки пользователей из-за высокоразвитых виртуальных консультантов и помощников,
- офисные клерки из-за оптимизации и автоматизации значительного количества бизнес процедур,
- бухгалтеры,
- финансовые и юридические консультанты,
- риск менеджеры, трейдеры и инвестиционные консультанты,
- финансовые и страховые аналитики начального и среднего уровня,
- копирайтеры, рекламные менеджеры,
- ньюсмейкеры,
- дизайнеры, фото и видео редакторы начального и среднего уровня,
- программисты начального и среднего уровня,
- работники склада и доставки по мере интеграции роботизированных систем и курьеров-беспилотников,
- низко и среднеквалифицированные работники медицины и образования консультационного сегмента,
- работники торговли, сельского хозяйства и промышленности по мере автоматизации процессов.

Список профессий огромный, но ведь как-то раньше переваривали технологический прогресс?

Теоретически, внедрение генеративного ИИ позволит:
- Существенно ускорить технологический прогресс, более быстро внедряя инновационные разработки и продукты.

- Создать новые рынки и новые отрасли, прямо или косвенно связанные с обслуживание ИИ индустрии.

- Автоматизировать многие процессы, повысить производительность труда, высвобождая рабочую силу.

- Оптимизировать бизнес процессы, повысить скорость и качество принятия решений, минимизируя ошибки.

- Оптимизировать цепочки поставок, склад и логистику, что снизит простои, избыток или дефицит, повышая общую эффективность.

- Снизить риски бизнеса в финансах, страховании и в юридических аспектах.

- Улучшить качество продукции и услуг.

Все это должно существенно повысить рост ВВП, снизить инфляцию, увеличить маржинальность и эффективность бизнеса, делая людей счастливыми. Так что здесь не так?

На самом деле хорошая иллюстрация – это внедрение автоматизации в промышленности в начале 20 века, где расширение применение конвейеров шло с 1915 по 1980, а с 1980-х началось применение АСУ, САПР и высокоинтегрированных промышленных комплексов, пик которых пришелся на 2004-2007 (за последние 15-20 лет практически нет существенных инноваций в автоматизации промышленности на уровне конвейеров).

С другой стороны, пошла новая волна использования роботов, началась интеграция ИИ и использование принципиально новой технологии 3D печати.

За последние 50 лет промышленность в США выросла в 2.3 раза, а количество занятых сократилось почти на треть. Внедрение инноваций в промышленность за последние 15 лет не оказало влияния ни на уровень маржинальности промышленности,
ни на объем выпуска продукций (интегрально по всей промышленности).

Учитывая, что период глубокой автоматизации промышленности длился как раз 50 лет, рост в 2.3 раза не выглядит существенным, не так ли?

Внедрение ИИ по всей экономике активно идет последние 15 лет, но именно с 2009 консенсус мнение многих академических умов заключается в том, что рост сломался, а общая эффективность падает в сравнении с периодом 1992-2007.

При этом высокоинтенсивное внедрение инноваций за последние 30 лет (компьютеры, интернет, мобильные телефоны, беспроводная связь, биотехнологии, нанотехнологии, 3d печать, облачные технологии, ИИ) не привело к всеобъемлющему росту безработицы (наоборот, дефицит кадров!).

Эти небольшие зарисовки показывают, что не все так очевидно…