Отчего зависит безопасность квантовой сети? Часть 1

  • Pirandola, U. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv:1906.01645 (2019).

  • C. Elliott, “Building the quantum network,” New J. Phys. 4, 46 (2002).

  • C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of the DARPA quantum network,” Proc. SPIE 5815, 138–149 (2005).

  • C. Elliott and H. Yeh, “DARPA quantum network testbed,” Tech. Rep. (BBN Technologies, 2007).

  • A. Poppe, M. Peev, and O. Maurhart, “Outline of the SECOQC quantum-key-distribution network in Vienna,” Int. J. Quantum Inf. 6, 209–218 (2008).

  • J. Dynes, A. Wonfor, W.-S. Tam, A. W. Sharpe, R. Takahashi, M. Lucamarini, A. Plews, Z. L. Yuan, A. R. Dixon, J. Cho, Y. Tanizawa, J.-P. Elbers, H. Greißer, I. H. White, R. V. Penty, and A. J. Shields, “Cambridge quantum network,” NPJ Quantum Inf. 5, 101 (2019).

  • M. Peev, C. Pacher, R. Alléaume, et al., “The SECOQC quantum key distribution network in Vienna,” New J. Phys. 11, 075001 (2009).

  • F. Xu, W. Chen, S. Wang, Z. Yin, Y. Zhang, Y. Liu, Z. Zhou, Y. Zhao, H. Li, D. Liu, Z. Han, and G. Guo, “Field experiment on a robust 942 Vol. 14, No. 11 / November 2022 / Journal of Optical Communications and Networking Research Article hierarchical metropolitan quantum cryptography network,” Chin. Sci. Bull. 54, 2991–2997 (2009).

  • M. Sasaki, M. Fujiwara, H. Ishizuka, et al., “Field test of quantum key distribution in the Tokyo QKD network,” Opt. Express 19, 10387–10409 (2011).

  • S. Wang, W. Chen, Z.-Q. Yin, et al., “Field and long-term demonstration of a wide area quantum key distribution network,” Opt. Express 22, 21739–21756 (2014).

  • T. R. Beals and B. C. Sanders, “Distributed relay protocol for probabilistic information-theoretic security in a randomly-compromised network,” in International Conference on Information Theoretic Security (Springer, 2008), pp. 29–39.

  • L. Salvail, M. Peev, E. Diamanti, R. Alléaume, N. Lütkenhaus, and T. Länger, “Security of trusted repeater quantum key distribution networks,” J. Comput. Secur. 18, 61–87 (2010).

  • S. M. Barnett and S. J. Phoenix, “Securing a quantum key distribution relay network using secret sharing,” in IEEE GCC Conference and Exhibition (GCC) (IEEE, 2011), pp. 143–145.

  • S. J. Phoenix and S. M. Barnett, “Relay QKD networks & bit transport,” arXiv:1502.06319 (2015).

  • C. Ma, Y. Guo, and J. Su, “A multiple paths scheme with labels for key distribution on quantum key distribution network,” in IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) (IEEE, 2017), pp. 2513–2517.

  • H. Zhou, K. Lv, L. Huang, and X. Ma, “Quantum network: security assessment and key management,” IEEE/ACM Trans. Netw. 30, 1328–1339 (2022).

  • S. Rass, A. Wiegele, and P. Schartner, “Building a quantum network: how to optimize security and expenses,” J. Netw. Syst. Manag. 18, 283–299 (2010).

  • N. R. Solomons, A. I. Fletcher, D. Aktas, N. Venkatachalam, S. Wengerowsky, M. Loncˇ aric´ , S. P. Neumann, B. Liu, Ž. Samec, M. Stipcˇ evic´ , R. Ursin, S. Pirandola, J. G. Rarity, and S. K. Joshi, “Scalable authentication and optimal flooding in a quantum network,” arXiv:2101.12225 (2021).

  • M. Pattaranantakul, A. Janthong, K. Sanguannam, P. Sangwongngam, and K. Sripimanwat, “Secure and efficient key management technique in quantum cryptography network,” in 4th International Conference on Ubiquitous and Future Networks (ICUFN) (IEEE, 2012), pp. 280–285.

  • S. Das, S. Bäuml, M. Winczewski, and K. Horodecki, “Universal limitations on quantum key distribution over a network,” Phys. Rev. X 11, 041016 (2021).

  • S. Pirandola, “End-to-end capacities of a quantum communication network,” Commun. Phys. 2, 51 (2019).

  • L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79, 032325 (2009).

  • Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, and J.-W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).

  • T.-J. Wang, S.-Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).

  • M. Ghalaii and S. Pirandola, “Capacity-approaching quantum repeaters for quantum communications,” Phys. Rev. A 102, 062412 (2020).

  • A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini, and G. Bianchi, “Quantum Internet: networking challenges in distributed quantum computing,” IEEE Netw. 34, 137–143 (2019).

  • A. S. Cacciapuoti, M. Caleffi, R. Van Meter, and L. Hanzo, “When entanglement meets classical communications: quantum teleportation for the Quantum Internet,” IEEE Trans. Commun. 68, 3808–3833 (2020).

  • J. Illiano, M. Caleffi, A. Manzalini, and A. S. Cacciapuoti, “Quantum Internet protocol stack: a comprehensive survey,” arXiv:2202.10894 (2022).

  • H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).

  • S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).

  • K. Tamaki, H.-K. Lo, C.-H. F. Fung, and B. Qi, “Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw,” Phys. Rev. A 85, 042307 (2012).

  • X. Ma and M. Razavi, “Alternative schemes for measurementdevice- independent quantum key distribution,” Phys. Rev. A 86, 062319 (2012).

  • Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurementdevice- independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).

  • K. Goodenough, D. Elkouss, and S. Wehner, “Optimizing repeater schemes for the quantum internet,” Phys. Rev. A 103, 032610 (2021).

  • C. Ottaviani, C. Lupo, R. Laurenza, and S. Pirandola, “Modular network for high-rate quantum conferencing,” Commun. Phys. 2, 118 (2019).

  • G.-J. Fan-Yuan, F.-Y. Lu, S. Wang, Z.-Q. Yin, D.-Y. He, Z. Zhou, J. Teng, W. Chen, G.-C. Guo, and Z.-F. Han, “Measurementdevice- independent quantum key distribution for nonstandalone networks,” Photon. Res. 9, 1881–1891 (2021).

  • G.-J. Fan-Yuan, F.-Y. Lu, S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, Z. Zhou, Z.-H. Wang, J. Teng, G.-C. Guo, and Z.-F. Han, “Robust and adaptable quantum key distribution network without trusted nodes,” Optica 9, 812–823 (2022).

  • M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming the rate–distance limit of quantum key distribution without quantum repeaters,” Nature 557, 400–403 (2018).

  • S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental limits of repeaterless quantum communications,” Nat. Commun. 8, 15043 (2017).

  • S. Pirandola, S. L. Braunstein, R. Laurenza, C. Ottaviani, T. P. Cope, G. Spedalieri, and L. Banchi, “Theory of channel simulation and bounds for private communication,” Quantum Sci. Technol. 3, 035009 (2018).

  • M. Minder, M. Pittaluga, G. Roberts, M. Lucamarini, J. Dynes, Z. Yuan, and A. Shields, “Experimental quantum key distribution beyond the repeaterless secret key capacity,” Nat. Photonics 13, 334–338 (2019).

  • S. Wang, D.-Y. He, Z.-Q. Yin, F.-Y. Lu, C.-H. Cui, W. Chen, Z. Zhou, G.-C. Guo, and Z.-F. Han, “Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system,” Phys. Rev. X 9, 021046 (2019).

  • X. Zhong, J. Hu, M. Curty, L. Qian, and H.-K. Lo, “Proof-of-principle experimental demonstration of twin-field type quantum key distribution,” arXiv:1902.10209 (2019).

  • V. Chistiakov, A. Kozubov, A. Gaidash, A. Gleim, and G. Miroshnichenko, “Feasibility of twin-field quantum key distribution based on multi-mode coherent phase-coded states,” Opt. Express 27, 36551–36561 (2019).

  • S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, R.-Q. Wang, P. Ye, Y. Zhou, G.-J. Fan-Yuan, F.-X. Wang, W. Chen, Y.-G. Zhu, P. V. Morozov, A. V. Divochiy, Z. Zhou, G.-C. Guo, and Z.-F. Han, “Twin-field quantum key distribution over 830-km fibre,” Nat. Photonics 16, 154–161 (2022).

  • F. Grasselli, H. Kampermann, and D. Bruß, “Conference key agreement with single-photon interference,” New J. Phys. 21, 123002 (2019).

  • R. Renner, “Security of quantum key distribution,” Int. J. Quantum Inf. 6, 1–127 (2008).

  • C. Portmann and R. Renner, “Cryptographic security of quantum key distribution,” arXiv:1409.3525 (2014).

  • T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms (MIT, 2022).

  • J. L. Carter and M. N. Wegman, “Universal classes of hash functions,” J. Comput. Syst. Sci. 18, 143–154 (1979).

  • C. Portmann, “Key recycling in authentication,” IEEE Trans. Inf. Theory 60, 4383–4396 (2014).

  • Y. Li and M. Chen, “Software-defined network function virtualization: a survey,” IEEE Access 3, 2542–2553 (2015). Research Article Vol. 14, No. 11 / November 2022 / Journal of Optical Communications and Networking 943

  • V. Martin, A. Aguado, J. Brito, A. Sanz, P. Salas, D. R. López, V. López, A. Pastor-Perales, A. Poppe, and M. Peev, “Quantum aware SDN nodes in the Madrid quantum network,” in 21st International Conference on Transparent Optical Networks (ICTON) (IEEE, 2019).

  • A. Aguado, V. Martin, D. Lopez, M. Peev, J. Martinez-Mateo, J. Rosales, F. de la Iglesia, M. Gomez, E. Hugues-Salas, A. Lord, R. Nejabati, and D. Simeonidou, “Quantum-aware software defined networks,” in International Conference on Quantum Cryptography (QCrypt) (2016).

  • E. Hugues-Salas, F. Ntavou, D. Gkounis, G. T. Kanellos, R. Nejabati, and D. Simeonidou, “Monitoring and physical-layer attack mitigation in SDN-controlled quantum key distribution networks,” J. Opt. Commun. Netw. 11, A209–A218 (2019).